Library

Library

Documentation for ReferenceFrameRotations.jl.

The Direction Cosine Matrix of type T is a SMatrix{3,3,T,9}, which is a 3x3 static matrix of type T.

source
struct EulerAngleAxis{T}

The definition of Euler Angle and Axis to represent a 3D rotation.

Fields

  • a: The Euler angle [rad].
  • v: The unitary vector aligned with the Euler axis.

Constructor

function EulerAngleAxis(a::T1, v::AbstractVector{T2}) where {T1,T2}

Create an Euler Angle and Axis representation structure with angle a [rad] and vector v. Notice that the vector v will not be normalized. The type of the returned structure will be selected according to the input types.

source
struct EulerAngles{T}

The definition of Euler Angles, which is composed of three angles a1, a2, and a3 together with a rotation sequence rot_seq. The latter is provided by a symbol with three characters, each one indicating the rotation axis of the corresponding angle (for example, :ZYX). The valid values for rot_seq are:

  • :XYX, :XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and ZYZ.

Constructor

function EulerAngles(a1::T1, a2::T2, a3::T3, rot_seq::Symbol = :ZYX) where {T1,T2,T3}

Create a new instance of EulerAngles with the angles a1, a2, and a3 and the rotation sequence rot_seq. The type will be inferred from T1, T2, and T3. If rot_seq is not provided, then it defaults to :ZYX.

source

struct Quaternion{T}

The definition of the quaternion. It has four values of type T. The quaternion representation is:

q0 + q1.i + q2.j + q3.k
source
function Quaternion(v::AbstractVector)

If the vector v has 3 components, then create a quaternion in which the real part is 0 and the vectorial or imaginary part has the same components of the vector v. In other words:

q = 0 + v[1].i + v[2].j + v[3].k

Otherwise, if the vector v has 4 components, then create a quaternion in which the elements match those of the input vector:

q = v[1] + v[2].i + v[3].j + v[4].k
source
function Quaternion(r::Number, v::AbstractVector)

Create a quaternion with real part r and vectorial or imaginary part v:

r + v[1].i + v[2].j + v[3].k
source
function Quaternion(q0::T0, q1::T1, q2::T2, q3::T3) where {T0,T1,T2,T3}

Create the following quaternion:

q0 + q1.i + q2.j + q3.k

in which:

  • q0 is the real part of the quaternion.
  • q1 is the X component of the quaternion vectorial part.
  • q2 is the Y component of the quaternion vectorial part.
  • q3 is the Z component of the quaternion vectorial part.
source
function Quaternion(::UniformScaling,::Quaternion{T}) where T

Create an identity quaternion of type T:

T(1) + T(0).i + T(0).j + T(0).k
source
function Quaternion(u::UniformScaling{T}) where T
function Quaternion{T}(u::UniformScaling) where T

Create the quaternion u.λ + 0.i + 0.j + 0.k.

source
Base.invMethod.
function inv(Θ::EulerAngles)

Return the Euler angles that represent the inverse rotation of Θ. Notice that the rotation sequence of the result will be the inverse of the input. Hence, if the input rotation sequence is, for example, :XYZ, then the result will be represented using :ZYX.

source
Base.invMethod.
@inline function inv(q::Quaternion)

Compute the inverse of the quaternion q:

conj(q)
-------
  |q|²
source
Base.invMethod.
@inline function inv(ea::EulerAngleAxis)

Compute the inverse rotation of ea. The Euler angle returned by this function will always be in the interval [0, π].

source
LinearAlgebra.normMethod.
@inline function norm(q::Quaternion)

Compute the Euclidean norm of the quaternion q:

sqrt(q0² + q1² + q2² + q3²)
source
@inline function angle_to_angle(θ₁::Number, θ₂::Number, θ₃::Number, rot_seq_orig::Symbol, rot_seq_dest::Symbol)
@inline function angle_to_angle(Θ::EulerAngles, rot_seq_dest::Symbol)

Convert the Euler angles θ₁, θ₂, and θ₃ [rad] with the rotation sequence rot_seq_orig to a new set of Euler angles with rotation sequence rot_seq_dest. The input values of the origin Euler angles can also be passed inside the structure Θ (see EulerAngles).

The rotation sequence is defined by a :Symbol. The possible values are: :XYX, XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and :ZYZ. If no value is specified, then it defaults to :ZYX.

Example

julia> angle_to_angle(-pi/2, -pi/3, -pi/4, :ZYX, :XYZ)
EulerAngles{Float64}:
  R(X):  -1.0472 rad ( -60.0000 deg)
  R(Y):   0.7854 rad (  45.0000 deg)
  R(Z):  -1.5708 rad ( -90.0000 deg)

julia> angle_to_angle(-pi/2, 0, 0, :ZYX, :XYZ)
EulerAngles{Float64}:
  R(X):   0.0000 rad (   0.0000 deg)
  R(Y):   0.0000 rad (   0.0000 deg)
  R(Z):  -1.5708 rad ( -90.0000 deg)

julia> Θ = EulerAngles(1,2,3,:XYX)
EulerAngles{Int64}:
  R(X):   1.0000 rad (  57.2958 deg)
  R(Y):   2.0000 rad ( 114.5916 deg)
  R(X):   3.0000 rad ( 171.8873 deg)

julia> angle_to_angle(Θ,:ZYZ)
EulerAngles{Float64}:
  R(Z):  -2.7024 rad (-154.8356 deg)
  R(Y):   1.4668 rad (  84.0393 deg)
  R(Z):  -1.0542 rad ( -60.3984 deg)
source
@inline function angle_to_angleaxis(θ₁::Number, θ₂::Number, θ₃::Number, rot_seq::Symbol = :ZYX)
@inline function angle_to_angleaxis(Θ::EulerAngles)

Convert the Euler angles θ₁, θ₂, and θ₃ [rad] with the rotation sequence rot_seq to an Euler angle and axis representation. Those values can also be passed inside the structure Θ (see EulerAngles).

The rotation sequence is defined by a :Symbol. The possible values are: :XYX, XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and :ZYZ. If no value is specified, then it defaults to :ZYX.

Example

julia> angle_to_angleaxis(1,0,0,:XYZ)
EulerAngleAxis{Float64}:
  Euler angle:   1.0000 rad ( 57.2958 deg)
   Euler axis: [  1.0000,   0.0000,   0.0000]

julia> Θ = EulerAngles(1,1,1,:XYZ);

julia> angle_to_angleaxis(Θ)
EulerAngleAxis{Float64}:
  Euler angle:   1.9391 rad (111.1015 deg)
   Euler axis: [  0.6924,   0.2031,   0.6924]
source
function angle_to_dcm(θ₁::Number, θ₂::Number, θ₃::Number, rot_seq::Symbol = :ZYX)

Convert the Euler angles θ₁, θ₂, and θ₃ [rad] with the rotation sequence rot_seq to a direction cosine matrix.

The rotation sequence is defined by a :Symbol. The possible values are: :XYX, XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and :ZYZ. If no value is specified, then it defaults to :ZYX.

Remarks

This function assigns dcm = A3 * A2 * A1 in which Ai is the DCM related with the i-th rotation, i Є [1,2,3].

Example

dcm = angle_to_dcm(pi/2, pi/3, pi/4, :ZYX)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  3.06162e-17  0.5       -0.866025
 -0.707107     0.612372   0.353553
  0.707107     0.612372   0.353553
source
function angle_to_dcm(Θ::EulerAngles)

Convert the Euler angles Θ (see EulerAngles) to a direction cosine matrix.

Returns

The direction cosine matrix.

Remarks

This function assigns dcm = A3 * A2 * A1 in which Ai is the DCM related with the i-th rotation, i Є [1,2,3].

Example

julia> angle_to_dcm(EulerAngles(pi/2, pi/3, pi/4, :ZYX))
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  3.06162e-17  0.5       -0.866025
 -0.707107     0.612372   0.353553
  0.707107     0.612372   0.353553
source
function angle_to_quat(eulerang::EulerAngles)

Convert the Euler angles eulerang (see EulerAngles) to a quaternion.

Remarks

This function assigns q = q1 * q2 * q3 in which qi is the quaternion related with the i-th rotation, i Є [1,2,3].

Example

julia> angle_to_quat(pi/2, pi/3, pi/4, :ZYX)
Quaternion{Float64}:
  + 0.7010573846499779 - 0.09229595564125714.i + 0.5609855267969309.j + 0.43045933457687935.k
source
function angle_to_quat(θ₁::T1, θ₂::T2, θ₃::T3, rot_seq::Symbol = :ZYX) where {T1<:Number, T2<:Number, T3<:Number}

Convert the Euler angles θ₁, θ₂, and θ₃ [rad] with the rotation sequence rot_seq to a quaternion.

The rotation sequence is defined by a :Symbol. The possible values are: :XYX, XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and :ZYZ. If no value is specified, then it defaults to :ZYX.

Remarks

This function assigns q = q1 * q2 * q3 in which qi is the quaternion related with the i-th rotation, i Є [1,2,3].

Example

julia> angle_to_quat(pi/2, pi/3, pi/4, :ZYX)
Quaternion{Float64}:
  + 0.7010573846499779 - 0.09229595564125714.i + 0.5609855267969309.j + 0.43045933457687935.k
source
@inline angle_to_rot([T,] Θ::EulerAngles)

Convert the Euler angles Θ (see EulerAngles) to a rotation description of type T, which can be DCM or Quaternion. If the type T is not specified, then it defaults to DCM.

Example

julia> dcm = angle_to_rot(EulerAngles(pi/2, pi/3, pi/4, :ZYX))
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  3.06162e-17  0.5       -0.866025
 -0.707107     0.612372   0.353553
  0.707107     0.612372   0.353553

julia> q   = angle_to_rot(Quaternion,EulerAngles(pi/2, pi/3, pi/4, :ZYX))
Quaternion{Float64}:
  + 0.7010573846499779 - 0.09229595564125714.i + 0.5609855267969309.j +
  0.43045933457687935.k
source
@inline angle_to_rot([T,] θx::Number, θy::Number, θz::Number, rot_seq::Symbol)

Convert the Euler angles Θx, Θy, and Θz [rad] with the rotation sequence rot_seq to a rotation description of type T, which can be DCM or Quaternion. If the type T is not specified, then it defaults to DCM.

The rotation sequence is defined by a :Symbol. The possible values are: :XYX, XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and :ZYZ. If no value is specified, then it defaults to :ZYX.

Example

julia> dcm = angle_to_rot(pi/2, pi/3, pi/4, :ZYX)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  3.06162e-17  0.5       -0.866025
 -0.707107     0.612372   0.353553
  0.707107     0.612372   0.353553

julia> q   = angle_to_rot(Quaternion,pi/2, pi/3, pi/4, :ZYX)
Quaternion{Float64}:
  + 0.7010573846499779 - 0.09229595564125714.i + 0.5609855267969309.j + 0.43045933457687935.k
source
@inline function angleaxis_to_angle(θ::Number, v::AbstractVector, rot_seq::Symbol)
@inline function angleaxis_to_angle(ea::EulerAngleAxis, rot_seq::Symbol)

Convert the Euler angle θ [rad] and Euler axis v, which must be a unit vector, to Euler angles with rotation sequence rot_seq. Those values can also be passed inside the structure ea (see EulerAngleAxis).

The rotation sequence is defined by a :Symbol. The possible values are: :XYX, XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and :ZYZ. If no value is specified, then it defaults to :ZYX.

Example

julia> ea = EulerAngleAxis(45*pi/180, [1;0;0]);

julia> angleaxis_to_angles(ea, :ZXY)
EulerAngles{Float64}:
  R(Z):   0.0000 rad (   0.0000 deg)
  R(X):   0.7854 rad (  45.0000 deg)
  R(Y):   0.0000 rad (   0.0000 deg)
source
@inline function angleaxis_to_dcm(a::Number, v::AbstractVector)
@inline function angleaxis_to_dcm(ea::EulerAngleAxis)

Convert the Euler angle a [rad] and Euler axis v, which must be a unit vector to a DCM. Those values can also be passed inside the structure ea (see EulerAngleAxis).

Remarks

It is expected that the vector v is unitary. However, no verification is performed inside the function. The user must handle this situation.

Example

julia> v = [1;1;1];

julia> v /= norm(v);

julia> angleaxis_to_dcm(pi/2,v)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  0.333333   0.910684  -0.244017
 -0.244017   0.333333   0.910684
  0.910684  -0.244017   0.333333

julia> ea = EulerAngleAxis(pi/2,v);

julia> angleaxis_to_dcm(ea)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  0.333333   0.910684  -0.244017
 -0.244017   0.333333   0.910684
  0.910684  -0.244017   0.333333
source
function angleaxis_to_quat(angleaxis::EulerAngleAxis)

Convert a Euler angle and Euler axis angleaxis (see EulerAngleAxis) to a quaternion.

Remarks

It is expected that the vector angleaxis.v is unitary. However, no verification is performed inside the function. The user must handle this situation.

Example

julia> v = [1;1;1];

julia> v /= norm(v);

julia> angleaxis_to_quat(EulerAngleAxis(pi/2,v))
Quaternion{Float64}:
  + 0.7071067811865476 + 0.408248290463863.i + 0.408248290463863.j + 0.408248290463863.k
source
function angleaxis_to_quat(θ::Number, v::AbstractVector)

Convert the Euler angle θ [rad] and Euler axis v, which must be a unit vector, to a quaternion.

Remarks

It is expected that the vector v is unitary. However, no verification is performed inside the function. The user must handle this situation.

Example

julia> v = [1;1;1];

julia> v /= norm(v);

julia> angleaxis_to_quat(pi/2,v)
Quaternion{Float64}:
  + 0.7071067811865476 + 0.408248290463863.i + 0.408248290463863.j + 0.408248290463863.k
source
@inline function compose_rotation(R1, [, R2, R3, R4, R5, ...])

Compute a composed rotation using the rotations R1, R2, R3, R4, ..., in the following order:

 First rotation
 |
 |
R1 => R2 => R3 => R4 => ...
       |
       |
       Second rotation

The rotations can be described by:

  • A direction cosina matrix (DCM);
  • An Euler angle and axis (EulerAngleAxis);
  • A set of Euler anlges (EulerAngles); or
  • A quaternion (Quaternion).

Notice, however, that all rotations must be of the same type (DCM or quaternion).

The output will have the same type as the inputs.

Example

julia> D1 = angle_to_dcm(+pi/3,+pi/4,+pi/5,:ZYX);

julia> D2 = angle_to_dcm(-pi/5,-pi/4,-pi/3,:XYZ);

julia> compose_rotation(D1,D2)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
 1.0          0.0          5.55112e-17
 0.0          1.0          5.55112e-17
 5.55112e-17  5.55112e-17  1.0

julia> ea1 = EulerAngleAxis(30*pi/180, [0;1;0]);

julia> ea2 = EulerAngleAxis(45*pi/180, [0;1;0]);

julia> compose_rotation(ea1,ea2)
EulerAngleAxis{Float64}:
  Euler angle:   1.3090 rad ( 75.0000 deg)
   Euler axis: [  0.0000,   1.0000,   0.0000]

julia> Θ1 = EulerAngles(1,2,3,:ZYX);

julia> Θ2 = EulerAngles(-3,-2,-1,:XYZ);

julia> compose_rotation(Θ1, Θ2)
EulerAngles{Float64}:
  R(X):  -0.0000 rad (  -0.0000 deg)
  R(Y):   0.0000 rad (   0.0000 deg)
  R(Z):  -0.0000 rad (  -0.0000 deg)

julia> q1 = angle_to_quat(+pi/3,+pi/4,+pi/5,:ZYX);

julia> q2 = angle_to_quat(-pi/5,-pi/4,-pi/3,:XYZ);

julia> compose_rotation(q1,q2)
Quaternion{Float64}:
  + 1.0 + 0.0.i + 2.0816681711721685e-17.j + 5.551115123125783e-17.k
source
function create_rotation_matrix(angle::Number, axis::Symbol = :X)

Compute a rotation matrix that rotates a coordinate frame about the axis axis by the angle angle. The axis must be one of the following symbols: :X, :Y, or :Z.

Example

julia> create_rotation_matrix(pi/2, :X)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
 1.0   0.0          0.0
 0.0   6.12323e-17  1.0
 0.0  -1.0          6.12323e-17
source
function dcm_to_angle(dcm::DCM, rot_seq::Symbol=:ZYX)

Convert the DCM dcm to Euler Angles (see EulerAngles) given a rotation sequence rot_seq.

The rotation sequence is defined by a :Symbol. The possible values are: :XYX, XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and :ZYZ. If no value is specified, then it defaults to :ZYX.

Gimbal-lock and special cases

If the rotations are about three different axes, e.g. :XYZ, :ZYX, etc., then a second rotation of ±90˚ yields a gimbal-lock. This means that the rotations between the first and third axes have the same effect. In this case, the net rotation angle is assigned to the first rotation and the angle of the third rotation is set to 0.

If the rotations are about two different axes, e.g. :XYX, :YXY, etc., then a rotation about the duplicated axis yields multiple representations. In this case, the entire angle is assigned to the first rotation and the third rotation is set to 0.

Example

julia> D = DCM([1. 0. 0.; 0. 0. -1; 0. -1 0.]);

julia> dcm_to_angle(D,:XYZ)
EulerAngles{Float64}:
  R(X):   1.5708 rad (  90.0000 deg)
  R(Y):   0.0000 rad (   0.0000 deg)
  R(Z):   0.0000 rad (   0.0000 deg)

julia> D = angle_to_dcm(1, -pi/2, 2, :ZYX);

julia> dcm_to_angle(D,:ZYX)
EulerAngles{Float64}:
  R(Z):   3.0000 rad ( 171.8873 deg)
  R(Y):  -1.5708 rad ( -90.0000 deg)
  R(X):   0.0000 rad (   0.0000 deg)

julia> D = create_rotation_matrix(1,:X)*create_rotation_matrix(2,:X);

julia> dcm_to_angle(D,:XYX)
EulerAngles{Float64}:
  R(X):   3.0000 rad ( 171.8873 deg)
  R(Y):   0.0000 rad (   0.0000 deg)
  R(X):   0.0000 rad (   0.0000 deg)
source
function dcm_to_angleaxis(dcm::DCM{T}) where T<:Number

Convert the DCM dcm to an Euler angle and axis representation. By convention, the returned Euler angle will always be in the interval [0, π].

source
function dcm_to_quat(dcm::DCM)

Convert the DCM dcm to a quaternion. The type of the quaternion will be automatically selected by the constructor Quaternion to avoid InexactError.

Remarks

By convention, the real part of the quaternion will always be positive. Moreover, the function does not check if dcm is a valid direction cosine matrix. This must be handle by the user.

This algorithm was obtained from:

http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/

Example

julia> dcm = angle_to_dcm(pi/2,0.0,0.0,:XYZ);

julia> q   = dcm_to_quat(dcm)
Quaternion{Float64}:
  + 0.7071067811865476 + 0.7071067811865475.i + 0.0.j + 0.0.k
source
function ddcm(Dba::DCM, wba_b::AbstractArray)

Compute the time-derivative of the DCM dcm that rotates a reference frame a into alignment to the reference frame b in which the angular velocity of b with respect to a, and represented in b, is wba_b.

Returns

The time-derivative of the DCM Dba (3x3 matrix of type SMatrix{3,3}).

Example

julia> D = DCM(Matrix{Float64}(I,3,3));

julia> ddcm(D,[1;0;0])
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
 0.0   0.0  0.0
 0.0   0.0  1.0
 0.0  -1.0  0.0
source
function dquat(qba::Quaternion, wba_b::AbstractVector)

Compute the time-derivative of the quaternion qba that rotates a reference frame a into alignment to the reference frame b in which the angular velocity of b with respect to a, and represented in b, is wba_b.

Example

julia> q = Quaternion(1.0I);

julia> dquat(q,[1;0;0])
Quaternion{Float64}:
  + 0.0 + 0.5.i + 0.0.j + 0.0.k
source
@inline function inv_rotation(R)

Compute the inverse rotation of R, which can be:

  • A direction cosina matrix (DCM);
  • An Euler angle and axis (EulerAngleAxis);
  • A set of Euler anlges (EulerAngles); or
  • A quaternion (Quaternion).

The output will have the same type as R (DCM or quaternion).

Remarks

If R is a DCM, than its transpose is computed instead of its inverse to reduce the computational burden. The both are equal if the DCM has unit norm. This must be verified by the user.

If R is a quaternion, than its conjugate is computed instead of its inverse to reduce the computational burden. The both are equal if the quaternion has unit norm. This must be verified by the used.

Example

julia> D = angle_to_dcm(+pi/3,+pi/4,+pi/5,:ZYX);

julia> inv_rotation(D)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  0.353553  -0.492816  0.795068
  0.612372   0.764452  0.201527
 -0.707107   0.415627  0.572061

julia> ea = EulerAngleAxis(30*pi/180, [1;0;0]);

julia> inv_rotation(ea)
EulerAngleAxis{Float64}:
  Euler angle:   0.5236 rad ( 30.0000 deg)
   Euler axis: [ -1.0000,  -0.0000,  -0.0000]

julia> Θ = EulerAngles(-pi/3, -pi/2, -pi, :YXZ);

julia> inv_rotation(Θ)
EulerAngles{Float64}:
  R(Z):   3.1416 rad ( 180.0000 deg)
  R(X):   1.5708 rad (  90.0000 deg)
  R(Y):   1.0472 rad (  60.0000 deg)

julia> q = angle_to_quat(+pi/3,+pi/4,+pi/5,:ZYX);

julia> inv_rotation(q)
Quaternion{Float64}:
  + 0.8200711519756747 - 0.06526868310243991.i - 0.45794027732580056.j - 0.336918398289752.k
source
function orthonormalize(dcm::DCM)

Perform the Gram-Schmidt orthonormalization process in the DCM dcm and return the new matrix.

Warning: This function does not check if the columns of the input matrix span a three-dimensional space. If not, then the returned matrix should have NaN. Notice, however, that such input matrix is not a valid direction cosine matrix.

Example

julia> D = DCM(3I)

julia> orthonormalize(D)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
 1.0  0.0  0.0
 0.0  1.0  0.0
 0.0  0.0  1.0
source
function quat_to_angle(q::Quaternion, rot_seq::Symbol = :ZYX)

Convert the quaternion q to Euler Angles (see EulerAngles) given a rotation sequence rot_seq.

The rotation sequence is defined by a :Symbol. The possible values are: :XYX, XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, and :ZYZ. If no value is specified, then it defaults to :ZYX.

Example

julia> q = Quaternion(cosd(45/2), sind(45/2), 0, 0);

julia> quat_to_angle(q,:XYZ)
EulerAngles{Float64}(0.7853981633974484, 0.0, -0.0, :XYZ)
source
function quat_to_angleaxis(q::Quaternion{T}) where T

Convert the quaternion q to a Euler angle and axis representation (see EulerAngleAxis). By convention, the Euler angle will be kept between [0, π] rad.

Remarks

This function will not fail if the quaternion norm is not 1. However, the meaning of the results will not be defined, because the input quaternion does not represent a 3D rotation. The user must handle such situations.

Example

julia> q = Quaternion(cosd(45/2), sind(45/2), 0, 0);

julia> quat_to_angleaxis(q)
EulerAngleAxis{Float64}(0.7853981633974484, [1.0, 0.0, 0.0])
source
function quat_to_dcm(q::Quaternion)

Convert the quaternion q to a Direction Cosine Matrix (DCM).

Example

julia> q = Quaternion(cosd(45/2), sind(45/2), 0, 0);

julia> quat_to_dcm(q)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
 1.0   0.0       0.0
 0.0   0.707107  0.707107
 0.0  -0.707107  0.707107
source
function smallangle_to_dcm(θx::Number, θy::Number, θz::Number; normalize = true)

Create a direction cosine matrix from three small rotations of angles θx, θy, and θz [rad] about the axes X, Y, and Z, respectively. If the keyword normalize is true, then the matrix will be normalized using the function orthonormalize.

Example

julia> smallangle_to_dcm(+0.01, -0.01, +0.01)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  0.9999     0.00989903  0.010098
 -0.009999   0.999901    0.00989802
 -0.009999  -0.009998    0.9999

julia> smallangle_to_dcm(+0.01, -0.01, +0.01; normalize = false)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  1.0    0.01  0.01
 -0.01   1.0   0.01
 -0.01  -0.01  1.0
source
function smallangle_to_quat(θx::Number, θy::Number, θz::Number)

Create a quaternion from three small rotations of angles θx, θy, and θz [rad] about the axes X, Y, and Z, respectively.

Remarks

The quaternion is normalized.

Example

julia> smallangle_to_quat(+0.01, -0.01, +0.01)
Quaternion{Float64}:
  + 0.9999625021092433 + 0.004999812510546217.i - 0.004999812510546217.j + 0.004999812510546217.k
source
function smallangle_to_rot([T,] θx::Number, θy::Number, θz::Number[; normalize = true])

Create a rotation description of type T from three small rotations of angles θx, θy, and θz [rad] about the axes X, Y, and Z, respectively.

The type T of the rotation description can be DCM or Quaternion. If the type T is not specified, then if defaults to DCM.

If T is DCM, then the resulting matrix will be orthonormalized using the orthonormalize function if the keyword normalize is true.

Example

julia> dcm = smallangle_to_rot(+0.01, -0.01, +0.01)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  0.9999     0.00989903  0.010098
 -0.009999   0.999901    0.00989802
 -0.009999  -0.009998    0.9999

julia> dcm = smallangle_to_rot(+0.01, -0.01, +0.01; normalize = false)
3×3 StaticArrays.SArray{Tuple{3,3},Float64,2,9}:
  1.0    0.01  0.01
 -0.01   1.0   0.01
 -0.01  -0.01  1.0

julia> q   = smallangle_to_rot(Quaternion,+0.01, -0.01, +0.01)
Quaternion{Float64}:
  + 0.9999625021092433 + 0.004999812510546217.i - 0.004999812510546217.j + 0.004999812510546217.k
source
@inline function vect(q::Quaternion)

Return the vectorial or imaginary part of the quaternion q represented by a 3 × 1 vector of type SVector{3}.

source
Base.:*Method.
@inline function *(v::AbstractVector, q::Quaternion)
@inline function *(q::Quaternion, v::AbstractVector)

Compute the multiplication qv*q or q*qv in which qv is a quaternion with real part 0 and vectorial/imaginary part v (Hamilton product).

source
Base.:*Method.
function *(Θ₂::EulerAngles, Θ₁::EulerAngles)

Compute the composed rotation of Θ₁ -> Θ₂. Notice that the rotation will be represented by Euler angles (see EulerAngles) with the same rotation sequence as Θ₂.

source
Base.:*Method.
@inline function *(u::UniformScaling, q::Quaternion)
@inline function *(q::Quaternion, u::UniformScaling)

Compute qu*q or q*qu (Hamilton product), in which qu is the scaled identity quaternion qu = u.λ * I.

source
Base.:*Method.
@inline function *(λ::Number, q::Quaternion)
@inline function *(q::Quaternion, λ::Number)

Compute λ*q or q*λ, in which λ is a scalar.

source
Base.:*Method.
@inline function *(q1::Quaternion, q2::Quaternion)

Compute the quaternion multiplication q1*q2 (Hamilton product).

source
Base.:*Method.
function *(ea₂::EulerAngleAxis{T1}, ea₁::EulerAngleAxis{T2}) where {T1,T2}

Compute the composed rotation of ea₁ -> ea₂. Notice that the rotation will be represented by a Euler angle and axis (see EulerAngleAxis). By convention, the output angle will always be in the range [0, π] [rad].

Notice that the vector representing the axis in ea₁ and ea₂ must be unitary. This function neither verifies this nor normalizes the vector.

source
Base.:+Method.
@inline function +(u::UniformScaling, q::Quaternion)
@inline function +(q::Quaternion, u::UniformScaling)

Compute qu + q or q + qu, in which qu is the scaled identity quaternion qu = u.λ * I.

source
Base.:+Method.
@inline function +(qa::Quaternion, qb::Quaternion)

Compute qa + qb.

source
Base.:-Method.
@inline function -(u::UniformScaling, q::Quaternion)
@inline function -(q::Quaternion, u::UniformScaling)

Compute qu - q or q - qu, in which qu is the scaled identity quaternion qu = u.λ * I.

source
Base.:-Method.
@inline function -(qa::Quaternion, qb::Quaternion)

Compute qa - qb.

source
Base.:/Method.
@inline function /(u::UniformScaling, q::Quaternion)
@inline function /(q::Quaternion, u::UniformScaling)

Compute qu/q or q/qu (Hamilton product), in which qu is the scaled identity quaternion qu = u.λ * I.

source
Base.:/Method.
@inline function /(λ::Number, q::Quaternion)
@inline function /(q::Quaternion, λ::Number)

Compute the division λ/q or q/λ, in which λ is a scalar.

source
Base.:/Method.
@inline /(q1::Quaternion, q2::Quaternion) = q1*inv(q2)

Compute q1*inv(q2) (Hamilton product).

source
Base.:\Method.
@inline function \(u::UniformScaling, q::Quaternion)
@inline function \(q::Quaternion, u::UniformScaling)

Compute inv(qu)*q or inv(q)*qu (Hamilton product), in which qu is the scaled identity quaternion qu = u.λ * I.

source
Base.:\Method.
@inline \(q::Quaternion, v::AbstractVector)
@inline \(v::AbstractVector, q::Quaternion)

Compute inv(q)*qv or inv(qv)*q in which qv is a quaternion with real part 0 and vectorial/imaginary part v (Hamilton product).

source
Base.:\Method.
@inline \(q1::Quaternion, q2::Quaternion) = inv(q1)*q2

Compute inv(q1)*q2.

source
Base.conjMethod.
@inline function conj(q::Quaternion)

Compute the complex conjugate of the quaternion q:

q0 - q1.i - q2.j - q3.k
source
Base.copyMethod.
@inline function copy(q::Quaternion{T}) where T

Create a copy of the quaternion q.

source
Base.getindexMethod.
@inline function getindex(q::Quaternion, ::Colon)

Transform the quaternion into a 4x1 vector of type T.

source
Base.imagMethod.
@inline function imag(q::Quaternion)

Return the vectorial or imaginary part of the quaternion q represented by a 3 × 1 vector of type SVector{3}.

source
Base.realMethod.
@inline function real(q::Quaternion)

Return the real part of the quaternion q: q0.

source
Base.showMethod.
function display(ea::EulerAngleAxis{T}) where T
function show(io::IO, mime::MIME"text/plain", ea::EulerAngleAxis{T}) where T

Display in stdout the Euler angle and axis ea.

source
Base.showMethod.
function show(io::IO, Θ::EulerAngles{T}) where T
function show(io::IO, mime::MIME"text/plain", Θ::EulerAngles{T}) where T

Print the Euler angles Θ to the IO io.

source
Base.showMethod.
function show(io::IO, q::Quaternion{T}) where T
function show(io::IO, mime::MIME"text/plain", q::Quaternion{T}) where T

Print the quaternion q to the stream io.

source
Base.zerosMethod.
@inline function zeros(q::Quaternion{T}) where T

Create the null quaternion with the same type T of another quaternion q:

T(0) + T(0).i + T(0).j + T(0).k

Example

julia> q1 = Quaternion{Float32}(cosd(45/2),sind(45/2),0,0);

julia> zeros(q1)
Quaternion{Float32}:
  + 0.0 + 0.0.i + 0.0.j + 0.0.k
source
Base.zerosMethod.
@inline function zeros(::Type{Quaternion{T}}) where T

Create the null quaternion of type T:

T(0) + T(0).i + T(0).j + T(0).k

If the type T is omitted, then it defaults to Float64.

Example

julia> zeros(Quaternion{Float32})
Quaternion{Float32}:
  + 0.0 + 0.0.i + 0.0.j + 0.0.k

julia> zeros(Quaternion)
Quaternion{Float64}:
  + 0.0 + 0.0.i + 0.0.j + 0.0.k
source