Quaternion
Quaternions are hypercomplex number with 4 dimensions that can be used to represent 3D rotations. In this package, a quaternion $\mathbf{q}$ is represented by
\[\mathbf{q} = q_0 + q_1 \cdot \mathbf{i} + q_2 \cdot \mathbf{j} + q_3 \cdot \mathbf{k} = r + \mathbf{v}\]
using the following immutable structure:
struct Quaternion{T}
q0::T
q1::T
q2::T
q3::T
end
Initialization
There are several ways to create a quaternion.
- Provide all the elements:
julia> q = Quaternion(1.0, 0.0, 0.0, 0.0)
Quaternion{Float64}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
- Provide the real and imaginary parts as separated numbers:
julia> r = sqrt(2) / 2
0.7071067811865476
julia> v = [sqrt(2) / 2, 0, 0]
3-element Vector{Float64}: 0.7071067811865476 0.0 0.0
julia> q = Quaternion(r,v)
Quaternion{Float64}: + 0.707107 + 0.707107⋅i + 0.0⋅j + 0.0⋅k
- Provide the real and imaginary parts as one single vector:
julia> v = [1., 2., 3., 4.]
4-element Vector{Float64}: 1.0 2.0 3.0 4.0
julia> q = Quaternion(v)
Quaternion{Float64}: + 1.0 + 2.0⋅i + 3.0⋅j + 4.0⋅k
- Provide just the imaginary part, in this case the real part will be 0:
julia> v = [1., 0., 0.]
3-element Vector{Float64}: 1.0 0.0 0.0
julia> q = Quaternion(v)
Quaternion{Float64}: + 0.0 + 1.0⋅i + 0.0⋅j + 0.0⋅k
- Create an identity quaternion:
julia> q = Quaternion{Float64}(I) # Creates an identity quaternion of type `Float64`.
Quaternion{Float64}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> q = Quaternion(1.0I) # Creates an identity quaternion of type `Float64`.
Quaternion{Float64}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> q = Quaternion{Float32}(I) # Creates an identity quaternion of type `Float32`.
Quaternion{Float32}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> q = Quaternion(1.0f0I) # Creates an identity quaternion of type `Float32`.
Quaternion{Float32}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> a = Quaternion(I,q) # Creates an identity quaternion with the same type of `q`.
Quaternion{Float32}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> q = Quaternion(I)
Quaternion{Bool}: + true + false⋅i + false⋅j + false⋅k
- Create an additive identity quaternion using the
zero
function:
julia> q = zero(Quaternion)
Quaternion{Float64}: + 0.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> q = zero(Quaternion{Float32})
Quaternion{Float32}: + 0.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> a = zero(q)
Quaternion{Float32}: + 0.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
- Create an multiplicative identity quaternion using the
one
function:
julia> q = one(Quaternion)
Quaternion{Float64}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> q = one(Quaternion{Float32})
Quaternion{Float32}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
julia> a = one(q)
Quaternion{Float32}: + 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
Individual elements of the quaternion can be accessed by:
q.q0
q.q1
q.q2
q.q3
or using linear indexing:
q[1]
q[2]
q[3]
q[4]
Notice that, in this case, the index 1 refers to the real part of the quaternion.
Since the type Quaternion
is immutable, its components cannot be changed individually after the creation. Hence, the following operation will lead to an error:
q.q0 = 1.0 # This is not defined and will not work.
If you want to modify a single value for the quaternion, you need to create another one:
q = Quaternion(1.0, q.q1, q.q2, q.q3)
This can be annoying sometimes, but using an immutable type provided a huge performance boost for the algorithm.
Operations
Sum, subtraction, and scalar multiplication
The sum between quaternions, the subtraction between quaternions, and the multiplication between a quaternion and a scalar are defined as usual:
\[\begin{aligned} \mathbf{q}_a + \mathbf{q}_b &= (q_{a,0} + q_{b,0}) + (q_{a,1} + q_{b,1}) \cdot \mathbf{i} + (q_{a,2} + q_{b,2}) \cdot \mathbf{j} + (q_{a,3} + q_{b,3}) \cdot \mathbf{k} \\ \mathbf{q}_a - \mathbf{q}_b &= (q_{a,0} - q_{b,0}) + (q_{a,1} - q_{b,1}) \cdot \mathbf{i} + (q_{a,2} - q_{b,2}) \cdot \mathbf{j} + (q_{a,3} - q_{b,3}) \cdot \mathbf{k} \\ \lambda \cdot \mathbf{q} &= (\lambda \cdot q_0) + (\lambda \cdot q_1) \cdot \mathbf{i} + (\lambda \cdot q_2) \cdot \mathbf{j} + (\lambda \cdot q_3) \cdot \mathbf{k} \end{aligned}\]
julia> q1 = Quaternion(1.0, 1.0, 0.0, 0.0)
Quaternion{Float64}: + 1.0 + 1.0⋅i + 0.0⋅j + 0.0⋅k
julia> q2 = Quaternion(1.0, 2.0, 3.0, 4.0)
Quaternion{Float64}: + 1.0 + 2.0⋅i + 3.0⋅j + 4.0⋅k
julia> q1 + q2
Quaternion{Float64}: + 2.0 + 3.0⋅i + 3.0⋅j + 4.0⋅k
julia> q1 - q2
Quaternion{Float64}: + 0.0 - 1.0⋅i - 3.0⋅j - 4.0⋅k
julia> q1 = Quaternion(1.0, 2.0, 3.0, 4.0)
Quaternion{Float64}: + 1.0 + 2.0⋅i + 3.0⋅j + 4.0⋅k
julia> q1 * 3
Quaternion{Float64}: + 3.0 + 6.0⋅i + 9.0⋅j + 12.0⋅k
julia> 4 * q1
Quaternion{Float64}: + 4.0 + 8.0⋅i + 12.0⋅j + 16.0⋅k
julia> 5q1
Quaternion{Float64}: + 5.0 + 10.0⋅i + 15.0⋅j + 20.0⋅k
Multiplication between quaternions
The multiplication between quaternions is defined using the Hamilton product:
\[\begin{aligned} \mathbf{q}_1 &= r_1 + \mathbf{v}_1\ , \\ \mathbf{q}_2 &= r_2 + \mathbf{v}_2\ , \\ \mathbf{q}_1 \cdot \mathbf{q}_2 &= r_1 \cdot r_2 - \mathbf{v}_1 \cdot \mathbf{v}_2 + r_1 \cdot \mathbf{v}_2 + r_2 \cdot \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2\ . \end{aligned}\]
julia> q1 = Quaternion(cosd(15), sind(15), 0.0, 0.0)
Quaternion{Float64}: + 0.965926 + 0.258819⋅i + 0.0⋅j + 0.0⋅k
julia> q2 = Quaternion(cosd(30), sind(30), 0.0, 0.0)
Quaternion{Float64}: + 0.866025 + 0.5⋅i + 0.0⋅j + 0.0⋅k
julia> q1 * q2
Quaternion{Float64}: + 0.707107 + 0.707107⋅i + 0.0⋅j + 0.0⋅k
If a quaternion $\mathbf{q}$ is multiplied by a vector $\mathbf{v}$, then the vector is converted to a quaternion with real part 0, $\mathbf{q}_v = 0 + \mathbf{v}$, and the quaternion multiplication is performed as usual:
\[\begin{aligned} \mathbf{q} &= r + \mathbf{w}\ , \\ \mathbf{q}_v &= 0 + \mathbf{v}\ , \\ \mathbf{q} \cdot \mathbf{v} \triangleq \mathbf{q} \cdot \mathbf{q}_v &= - \mathbf{w} \cdot \mathbf{v} + r \cdot \mathbf{v} + \mathbf{w} \times \mathbf{v}\ , \\ \mathbf{v} \cdot \mathbf{q} \triangleq \mathbf{q}_v \cdot \mathbf{q} &= - \mathbf{v} \cdot \mathbf{w} + r \cdot \mathbf{v} + \mathbf{v} \times \mathbf{w}\ . \end{aligned}\]
julia> q1 = Quaternion(cosd(22.5), sind(22.5), 0.0, 0.0)
Quaternion{Float64}: + 0.92388 + 0.382683⋅i + 0.0⋅j + 0.0⋅k
julia> v = [0; 1; 0]
3-element Vector{Int64}: 0 1 0
julia> v * q1
Quaternion{Float64}: + 0.0 + 0.0⋅i + 0.92388⋅j - 0.382683⋅k
julia> q1 * v
Quaternion{Float64}: - 0.0 + 0.0⋅i + 0.92388⋅j + 0.382683⋅k
Division between quaternions
Given this definition of the product between two quaternions, we can define the multiplicative inverse of a quaternion by:
\[\mathbf{q}^{-1} \triangleq \frac{\bar{\mathbf{q}}}{|\mathbf{q}|^2} = \frac{q_0 - q_1 \cdot \mathbf{i} - q_2 \cdot \mathbf{j} - q_3 \cdot \mathbf{k}} {q_0^2 + q_1^2 + q_2^2 + q_3^2}\]
Notice that, in this case, one gets:
\[\mathbf{q} \cdot \mathbf{q}^{-1} = 1\]
$\bar{\mathbf{q}}$, which is the quaternion conjugate, can be computed using conj(q)
.
$|\mathbf{q}|$, which is the quaternion norm, can be computed using norm(q)
.
The quaternion inverse can be computed using inv(q)
.
The exponentiation operator is not defined for quaternions. Hence, q^(-1)
or q^2
will throw an error.
The right division (/
) between two quaternions $\mathbf{q}_1$ and $\mathbf{q}_2$ is defined as the following Hamilton product:
\[\mathbf{q}_1\ /\ \mathbf{q}_2 = \mathbf{q}_1 \cdot \mathbf{q}_2^{-1}\ .\]
The left division (\
) between two quaternions $\mathbf{q}_1$ and $\mathbf{q}_2$ is defined as the following Hamilton product:
\[\mathbf{q}_1\ \backslash\ \mathbf{q}_2 = \mathbf{q}_1^{-1} \cdot \mathbf{q}_2\ .\]
julia> q1 = Quaternion(cosd(45 + 22.5), sind(45 + 22.5), 0.0, 0.0)
Quaternion{Float64}: + 0.382683 + 0.92388⋅i + 0.0⋅j + 0.0⋅k
julia> q2 = Quaternion(cosd(22.5), sind(22.5), 0.0, 0.0)
Quaternion{Float64}: + 0.92388 + 0.382683⋅i + 0.0⋅j + 0.0⋅k
julia> q1 / q2
Quaternion{Float64}: + 0.707107 + 0.707107⋅i + 0.0⋅j + 0.0⋅k
julia> q1 \ q2
Quaternion{Float64}: + 0.707107 - 0.707107⋅i + 0.0⋅j + 0.0⋅k
julia> q1 \ q2 * q1 / q2
Quaternion{Float64}: + 1.0 + 5.55112e-17⋅i + 0.0⋅j + 0.0⋅k
If a division operation (right-division or left-division) is performed between a vector $\mathbf{v}$ and a quaternion, then the vector $\mathbf{v}$ is converted to a quaternion real part 0, $\mathbf{q}_v = 0 + \mathbf{v}$, and the division operation is performed as defined earlier.
\[\begin{aligned} \mathbf{v}\ /\ \mathbf{q} &\triangleq \mathbf{q}_v \cdot \mathbf{q}^{-1} \\ \mathbf{v}\ \backslash\ \mathbf{q} &\triangleq \mathbf{q}_v^{-1} \cdot \mathbf{q} \\ \mathbf{q}\ /\ \mathbf{v} &\triangleq \mathbf{q} \cdot \mathbf{q}_v^{-1} \\ \mathbf{q}\ \backslash\ \mathbf{v} &\triangleq \mathbf{q}^{-1} \cdot \mathbf{q}_v \end{aligned}\]
julia> q1 = Quaternion(cosd(22.5), sind(22.5), 0.0, 0.0)
Quaternion{Float64}: + 0.92388 + 0.382683⋅i + 0.0⋅j + 0.0⋅k
julia> v = [0; 1; 0]
3-element Vector{Int64}: 0 1 0
julia> q1 \ v
Quaternion{Float64}: + 0.0 + 0.0⋅i + 0.92388⋅j - 0.382683⋅k
julia> v \ q1
Quaternion{Float64}: + 0.0 + 0.0⋅i - 0.92388⋅j + 0.382683⋅k
Other operations
There are also the following functions available:
julia> q = Quaternion(1.0, 2.0, 3.0, 4.0)
Quaternion{Float64}: + 1.0 + 2.0⋅i + 3.0⋅j + 4.0⋅k
julia> conj(q) # Returns the complex conjugate of the quaternion.
Quaternion{Float64}: + 1.0 - 2.0⋅i - 3.0⋅j - 4.0⋅k
julia> copy(q) # Creates a copy of the quaternion.
Quaternion{Float64}: + 1.0 + 2.0⋅i + 3.0⋅j + 4.0⋅k
julia> inv(q) # Computes the multiplicative inverse of the quaternion.
Quaternion{Float64}: + 0.0333333 - 0.0666667⋅i - 0.1⋅j - 0.133333⋅k
julia> inv(q) * q
Quaternion{Float64}: + 1.0 + 0.0⋅i + 5.55112e-17⋅j + 0.0⋅k
julia> imag(q) # Returns the vectorial / imaginary part of the quaternion.
3-element StaticArraysCore.SVector{3, Float64} with indices SOneTo(3): 2.0 3.0 4.0
julia> norm(q) # Computes the norm of the quaternion.
5.477225575051661
julia> real(q) # Returns the real part of the quaternion.
1.0
julia> vect(q) # Returns the vectorial / imaginary part of the quaternion.
3-element StaticArraysCore.SVector{3, Float64} with indices SOneTo(3): 2.0 3.0 4.0
The operation a / q
is equal to a * inv(q)
if a
is a scalar.
Converting reference frames using quaternions
Given the reference frames A and B, let $\mathbf{w}$ be a unitary vector in which a rotation about it of an angle $\theta$ aligns the reference frame A with the reference frame B (in this case, $\mathbf{w}$ is aligned with the Euler Axis and $\theta$ is the Euler angle). Construct the following quaternion:
\[\mathbf{q}_{ba} = \cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right) \cdot \mathbf{w}\ .\]
Then, a vector $\mathbf{v}$ represented in reference frame A ($\mathbf{v}_a$) can be represented in reference frame B using:
\[\mathbf{v}_b = \texttt{vect}\left(\mathbf{q}_{ba}^{-1} \cdot \mathbf{v}_a \cdot \mathbf{q}_{ba}\right)\ .\]
Hence:
qBA = Quaternion(cosd(22.5), sind(22.5), 0.0, 0.0)
vA = [0, 1, 0]
vB = vect(qBA \ vA * qBA) # Equivalent to: vect(inv(qBA)*vA*qBA)
vB
A SArray
is returned instead of the usual Array
. This is a static vector created by the package StaticArrays. Generally, you can treat this vector as any other one. The only downside is that you cannot modify individual components because it is immutable.