Eclipse Time
The eclipse time is the period the satellite does not receive sunlight due to the Earth shadow. This information is paramount for mission design since it directly interferes in the power and thermal subsystems.
We can compute the eclipse time of a satellite using the function:
eclipse_time_summary(orbp::OrbitPropagator; kwargs...) -> DataFrame
This function computes the eclipse time summary for the orbit propagator orbp
. The summary is computed as the total time the object stays in the sunlight, penumbra, and umbra regions per orbit at each day. The algorithm was adapted from [1].
The following keywords are available:
num_days::Number
: Number of days in which the analysis will be performed. (Default = 365)step::Number
: The step in which the propagation will occur. Notice that this function has a crossing estimation to accurately estimate the transition between the regions. However, if this step is very large, we may miss some small regions. If it is negative, it will be selected as the time in which the mean anomaly advances 0.5°. (Default = -1)unit::Symbol
: Select the unit in which the results will be generated. The possible values are::s
for seconds (Default);:m
for minutes; or:h
for hours.
The function returns a DataFrame
with three columns:
sunlight
: Total sunlight time per orbit at each day [unit
].penumbra
: Total penumbra time per orbit at each day [unit
].umbra
: Total umbra time per orbit at each day [unit
].
The unit of each column is stored in the DataFrame
using metadata.
If we want to verify the current lighting condition in a satellite (sunlight, umbra, or penumbra), see the function lighting_condition
.
Examples
We will compute the eclipse time of the Amazonia-1 mission for one year. The first thing we need to do is define the orbit:
julia> jd₀ = date_to_jd(2021, 1, 1)
2.4592155e6
julia> orb = KeplerianElements( jd₀, 7130.982e3, 0.001111, 98.405 |> deg2rad, ltdn_to_raan(10.5, jd₀), π / 2, 0 )
KeplerianElements{Float64, Float64}: Epoch : 2.45922e6 (2021-01-01T00:00:00) Semi-major axis : 7130.98 km Eccentricity : 0.001111 Inclination : 98.405 ° RAAN : 78.4021 ° Arg. of Perigee : 90.0 ° True Anomaly : 0.0 °
The next step is to define the desired propagator:
julia> orbp = Propagators.init(Val(:J2), orb)
OrbitPropagatorJ2{Float64, Float64}: Propagator name : J2 Orbit Propagator Propagator epoch : 2021-01-01T00:00:00 Last propagation : 2021-01-01T00:00:00
Now, we can use the function eclipse_time_summary
to obtain the eclipse time information for each day of the year:
julia> df = eclipse_time_summary(orbp; unit = :m)
365×4 DataFrame Row │ date sunlight penumbra umbra │ Date Float64 Float64 Float64 ─────┼───────────────────────────────────────── 1 │ 2021-01-01 66.2105 0.340195 33.4493 2 │ 2021-01-02 66.2308 0.340627 33.4285 3 │ 2021-01-03 66.2461 0.340958 33.4129 4 │ 2021-01-04 66.2623 0.341263 33.3964 5 │ 2021-01-05 66.2824 0.341704 33.3759 6 │ 2021-01-06 66.2932 0.341899 33.3649 7 │ 2021-01-07 66.3129 0.342331 33.3447 8 │ 2021-01-08 66.3274 0.342628 33.33 ⋮ │ ⋮ ⋮ ⋮ ⋮ 359 │ 2021-12-25 66.1274 0.338075 33.5345 360 │ 2021-12-26 66.1477 0.338525 33.5137 361 │ 2021-12-27 66.1595 0.338762 33.5017 362 │ 2021-12-28 66.18 0.339203 33.4808 363 │ 2021-12-29 66.1956 0.33955 33.4648 364 │ 2021-12-30 66.2122 0.339889 33.4479 365 │ 2021-12-31 66.2327 0.340339 33.4269 350 rows omitted
Finally, we can use the DataFrame
to analyze the result. For example, the maximum eclipse time in an orbit is:
julia> maximum(df.penumbra .+ df.umbra)
34.66395872764383
i.e., 34.66 minutes.
References
- [1] Longo, C. R. O., Rickman, S. L (1995). Method for the Calculation of Spacecraft Umbra and Penumbra Shadow Terminator Points. NASA Technical Paper 3547.