Anomalies
There are three types of anomalies[1] that can be used to describe the position of the satellite in the orbit plane with respect to the argument of perigee:
- The mean anomaly (
M
); - The eccentric anomaly (
E
); and - The true anomaly (
f
).
This package contains the following functions that can be used to convert one to another:
function M_to_E(e::Number, M::Number, tol::Number = 1e-10)
function M_to_f(e::Number, M::Number, tol::Number = 1e-10)
function E_to_f(e::Number, E::Number)
function E_to_M(e::Number, E::Number)
function f_to_E(e::Number,f::Number)
function f_to_E(orb::Orbit)
function f_to_M(e::Number, f::Number)
function f_to_M(orb::Orbit)
where:
M
is the mean anomaly [rad];E
is the eccentric anomaly [rad];f
is the true anomaly [rad];e
is the eccentricity;orb
is an instance of the structureOrbit
;tol
is used to select the tolerance for the cases in which the conversion is performed by a numerical method, such as the Newton-Raphson algorithm.
All the returned values are in [rad].
julia> M_to_E(0.04, pi/4)
0.8144932819286269
julia> M_to_f(0.04, pi/4)
0.8440031124631683
julia> f_to_M(0.04, pi/4)
0.7300148523821107
julia> M_to_f(0, 0.343)
0.3430000000000001
julia> M_to_f(0.04, 0.343)
0.37122803399203647
- 1In astronomy, anomaly is an angle.